Bayesian inference for bivariate ranks

نویسندگان

  • Simon Guillotte
  • François Perron
  • Johan Segers
چکیده

A recommender system based on ranks is proposed, where an expert’s ranking of a set of objects and a user’s ranking of a subset of those objects are combined to make a prediction of the user’s ranking of all objects. The rankings are assumed to be induced by latent continuous variables corresponding to the grades assigned by the expert and the user to the objects. The dependence between the expert and user grades is modelled by a copula in some parametric family. Given a prior distribution on the copula parameter, the user’s complete ranking is predicted by the mode of the posterior predictive distribution of the user’s complete ranking conditional on the expert’s complete and the user’s incomplete rankings. Various Markov chain Monte-Carlo algorithms are proposed to approximate the predictive distribution or only its mode. The predictive distribution can be obtained exactly for the Farlie–Gumbel–Morgenstern copula family, providing a benchmark for the approximation accuracy of the algorithms. The method is applied to the MovieLens 100k dataset with a Gaussian copula modelling dependence between the expert’s and user’s grades.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Objective Priors for the Bivariate Normal Model

Study of the bivariate normal distribution raises the full range of issues involving objective Bayesian inference, including the different types of objective priors (e.g., Jeffreys, invariant, reference, matching), the different modes of inference (e.g., Bayesian, frequentist, fiducial) and the criteria involved in deciding on optimal objective priors (e.g., ease of computation, frequentist per...

متن کامل

Objective Priors for the Bivariate Normal Model with Multivariate Generalizations

Study of the bivariate normal distribution raises the full range of issues involving objective Bayesian inference, including the different types of objective priors (e.g., Jeffreys, invariant, reference, matching), the different modes of inference (e.g., Bayesian, frequentist, fiducial), and the criteria involved in deciding on optimal objective priors (e.g., ease of computation, frequentist pe...

متن کامل

Bayesian Inference for D-vines: Estimation and Model Selection

During the last two decades the advent of fast computers has made Bayesian inference based on Markov Chain Monte Carlo (MCMC) methods very popular in many fields of science. These Bayesian methods are good alternatives to traditional maximum likelihood (ML) methods since they often can estimate complicated statistical models for which a ML approach fails. In this paper we review available MCMC ...

متن کامل

‎A Bayesian mixture model‎ for classification of certain and uncertain data

‎There are different types of classification methods for classifying the certain data‎. ‎All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data‎. ‎In recent years‎, ‎by assuming the distribution of the uncertain data is normal‎, ‎there are several estimation for the mean and variance of this distribution‎. ‎In this paper‎, ‎we co...

متن کامل

Bayesian Inference in Marshall-Olkin Bivariate Exponential Shared Gamma Frailty Regression Model under Random Censoring

Department of Statistics, University of Pune, Pune-411007, India. Email: david−[email protected]; richa−[email protected] Abstract Many analysis in epidemiological and prognostic studies and in studies of event history data require methods that allow for unobserved covariates or “frailties”. We consider the shared frailty model in the frame work of parametric proportional hazard model. Ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03300  شماره 

صفحات  -

تاریخ انتشار 2018